عوامل موثر بر مصرف آب بخش صنعت در استان‌های ایران: شواهدی از فرضیه منحنی زیست محیطی کوزنتس‏

نوع مقاله : علمی-پژوهشی

نویسندگان

1 کارشناسی ارشد اقتصاد انرژی، دانشکدة ادبیات و علوم انسانی، دانشگاه ایلام

2 دانشیار گروه اقتصاد، دانشکدة ادبیات و علوم انسانی، دانشگاه ایلام

3 استادیار گروه اقتصاد، دانشکدة ادبیات و علوم انسانی، دانشگاه ایلام

10.30465/ce.2022.41182.1781

چکیده

تدوین سیاست‌های ملی و نظارت بر مقررات مدیریت آب باید از نظر اجتماعی مطلوب، از نظر محیط‌زیستی ‏پایدار و از نظر اقتصادی برای دولت و صنعت مناسب باشد. در این پژوهش با استفاده از داده‌های دوره 1381 تا ‏‏1394 و روش گشتاورهای تعمیم‌یافته (‏GMM‏) علاوه بر بررسی فرضیه زیست‌محیطی کوزنتس با در نظر گرفتن ‏مصرف آب در استان‌های ایران، به بررسی تأثیر متغیرهای ارزش‌افزوده صنعت و تجارت (به‌عنوان عوامل ‏اقتصادی)، شهرنشینی، اندازه دولت (به‌عنوان عوامل اجتماعی)، میزان بارش و دمای سالانه (به‌عنوان عوامل ‏اکولوژی) بر مصرف آب بخش صنعت پرداخته‌شده است. نتایج تحقیق حاکی از عدم رابطه معنادار بین میزان ‏تجارت، ارزش‌افزوده بخش صنعت و مجذور آن با مصرف آب بخش صنعت و عدم تائید فرضیه زیست‌محیطی ‏کوزنتس در بخش صنعت است. نتایج همچنین نشان‌دهنده تأثیر معکوس و معنادار اندازه دولت و میزان دما و ‏تأثیر مثبت و معنادار شهرنشینی و میزان بارش بر مصرف آب بخش صنعت است، بنابراین لازم است صنایع هر ‏استان متناسب با شرایط طبیعی، اجتماعی و اقتصادی محلی خود به فناوری‌های مدیریت سهمیه آب مجهز شوند ‏و سهمیه‌بندی آب تحت نظارت دقیق قانونی انجام شود و مجازات سخت‌تری برای استفاده فراتر از سهمیه آب ‏اعمال شود و صرفه‌جویی در مصرف آب مورد تشویق قرار گیرد.‏

کلیدواژه‌ها


عنوان مقاله [English]

Factors Affecting Industrial Water Consumption in Iranian Provinces: ‎ Evidence from environmental Kuznets curve Hypothesis

نویسندگان [English]

  • asma shirkhani 1
  • Ali Sayehmiri 2
  • mhamad oshani 3
1 Master of Economic Energy, Faculty of Literature and Human Science, Ilam University
2 Associate Professor, Department of Economics, Faculty of Literature and Human Science, Ilam University
3 Assistant Professor, Department of Economics, Faculty of Literature and Human Science, Ilam University
چکیده [English]

Developing national policies and monitoring water management regulations must be socially desirable, environmentally sustainable, and economically appropriate for both government and industry. In the present study, for the first time, using data from the period 2002 to 2015 and the Generalized Fluid (GMM) method, in addition to examining the Kuznets hypothesis by considering water consumption in the provinces of Iran, the effect of value-added variables of industry and trade (As economic factors), urbanization, government size (as social factors), annual rainfall and temperature (as ecological factors) on industrial water consumption are discussed. The results indicate that there is no significant relationship between the amount of trade, value added of the industrial sector and its square with the water consumption of the industrial sector and the Kuznets hypothesis in the industrial sector is not confirmed. The results also show a significant inverse effect of government size and temperature and a positive and significant effect of urbanization and rainfall on water consumption in industry. Therefore, it is necessary for the industries of each province to be equipped with water quota management technologies in accordance with their local natural, social and economic conditions and water conservation should be encouraged.

کلیدواژه‌ها [English]

  • Kuznets Hypothesis
  • Value Added
  • Water Consumption
  • Industry Sector
  • Panel Data JEL Classification: Q01
  • F60
  • Q25
  • L00
ارباب، حمیدرضا و عباسی‌فر، زهره. (1388). بررسی رابطه آلودگی آب و رشد اقتصادی در کشورهای درحال‌توسعه و توسعه‌یافته. پژوهشنامه اقتصاد انرژی ایران 16-1، (3)1.
حیدری، محمد، خادم علیزاده، امیر و خورسندی، مرتضی. (1399). بررسی اثر رشد اقتصادی بر مصرف منابع آب؛ در چارچوب منحنی زیست‌محیطی کوزنتس EKC (مطالعه موردی: کشورهای منتخب 2012-1992). فصلنامه علمی-پژوهشی تحقیقات اقتصاد کشاورزی، 12(45), 163-180.
معبودی، رضا و حسنوند، داریوش. (1398). ارتباط ارزش‌افزوده اقتصادی و مصرف آب در بخش کشاورزی و صنعت. علوم و مهندسی آب و فاضلاب، 4(1), 42-51.
Andreoni, J. and A. Levinson (2001). The simple analytics of the environmental Kuznets curve. Journal of public economics 80(2): 269-286.             
Arellano, M. and S. Bond (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies 58(2): 277-297.            
Arellano, M. and O. Bover (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics 68(1): 29-51.            
Arrow, K., B. Bolin, R. Costanza, P. Dasgupta, C. Folke, C. S. Holling, B.-O. Jansson, S. Levin, K.-G. Mäler and C. Perrings (1995). Economic growth, carrying capacity, and the environment. Ecological economics 15(2): 91-95.             
Baltagi, B. H. (2008). Econometric analysis of panel data, Springer.             
Barbier, E. B. (1997). Introduction to the environmental Kuznets curve special issue. Environment and development economics 2(4): 369-381.             
Barbier, E. B. (2004). Water and economic growth. Economic Record 80(248): 1-16.             
Beckerman, W. (1992). Economic growth and the environment: Whose growth? Whose environment? World development 20(4): 481-496.             
Birkmann, J., M. Garschagen, F. Kraas and N. Quang (2010). Adaptive urban governance: new challenges for the second generation of urban adaptation strategies to climate change. Sustainability Science 5(2): 185-206.        
Blundell, R. and S. Bond (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87(1): 115-143.            
Bond, S. R. (2002). Dynamic panel data models: a guide to micro data methods and practice. Portuguese economic journal 1(2): 141-162.            
Chu, E. (2016). The political economy of urban climate adaptation and development planning in Surat, India. Environment and Planning C: Government and Policy 34(2): 281-298.             
Cole, M. A. (2004). Economic growth and water use. Applied Economics Letters 11(1): 1-4.             
Cole, M. A., A. J. Rayner and J. M. Bates (1997). The environmental Kuznets curve: an empirical analysis. Environment and development economics 2(4): 401-416.             
Dedeurwaerdere, T. (2014). Sustainability science for strong sustainability, Edward Elgar Publishing.          
Dietz, S. and E. Neumayer (2007). Weak and strong sustainability in the SEEA: Concepts and measurement. Ecological economics 61(4): 617-626.               
Dong, X.-Y. and Y. Hao (2018). Would income inequality affect electricity consumption? Evidence from China. Energy 142: 215-227.            
Duarte, R., V. Pinilla and A. Serrano (2013). Is there an environmental Kuznets curve for water use? A panel smooth transition regression approach. Economic Modelling 31: 518-527.           
Ekins, P., S. Simon, L. Deutsch, C. Folke and R. De Groot (2003). A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecological economics 44(2-3): 165-185.            
Flörke, M., E. Kynast, I. Bärlund, S. Eisner, F. Wimmer and J. Alcamo (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change 23(1): 144-156.             
Fujii, H., S. Managi and S. Kaneko (2012). A water resource efficiency analysis of the Chinese industrial sector. Environmental economics(3, Iss. 3): 82-92.            
Grossman, G. M. and A. B. Krueger (1995). Economic growth and the environment. The Quarterly journal of economics 110(2): 353-377.             
Hao, Y., X. Hu and H. Chen (2019). On the relationship between water use and economic growth in China: New evidence from simultaneous equation model analysis. Journal of cleaner production 235: 953-965.               
Hetz, K. (2016). Contesting adaptation synergies: political realities in reconciling climate change adaptation with urban development in Johannesburg, South Africa. Regional Environmental Change 16(4): 1171-1182.               
Hong, H., J. Liu and A.-X. Zhu (2020). Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Science of the Total Environment 718: 137231.            
Hristu-Varsakelis, D., S. Karagianni, M. Pempetzoglou and A. Sfetsos (2010). Optimizing production with energy and GHG emission constraints in Greece: An input–output analysis. Energy Policy 38(3): 1566-1577.        
Jia, S., H. Yang, S. Zhang, L. Wang and J. Xia (2006). Industrial water use Kuznets curve: evidence from industrialized countries and implications for developing countries. Journal of Water Resources Planning and Management 132(3): 183-191.           
Katz, D. (2015). Water use and economic growth: reconsidering the Environmental Kuznets Curve relationship. Journal of cleaner production 88: 205-213.         
Komyjani, A., H. Kyani and H. Hagshenas (2014). Investigating the impact of government size and quality on economic growth in Iran ARDL model. Journal of Quantity economic 4(1): 49-60.            
Kuznets, S. (1955). Economic growth and income inequality. The American economic review 45(1): 1-28.           
Lopez, R. (1994). The environment as a factor of production: the effects of economic growth and trade liberalization. Journal of Environmental Economics and Management 27(2): 163-184.            
Ma, W. and X. Li (2022). Impact of government subsidy on the optimal strategies of improving water use efficiency for a high-water-consumption manufacturer. Kybernetes.          
Maidment, D. R. and S. P. Miaou (1986). Daily water use in nine cities. Water resources research 22(6): 845-851.           
Mao, F., J. D. Miller, S. L. Young, S. Krause and D. M. Hannah (2022). Inequality of household water security follows a Development Kuznets Curve. Nature communications 13(1): 1-10.             
Mi, Z.-F., S.-Y. Pan, H. Yu and Y.-M. Wei (2015). Potential impacts of industrial structure on energy consumption and CO2 emission: a case study of Beijing. Journal of cleaner production 103: 455-462.        
Nizami, A., J. Ali and S. Nguyen-Khoa (2021). Government-industry partnership for sustainable water use: Insights from Pakistan. Sustainable Industrial Water Use: Perspectives, Incentives, and Tools: 115.             
Pahl-Wostl, C. (2017). An evolutionary perspective on water governance: from understanding to transformation. Water Resources Management 31(10): 2917-2932.          
Panayotou, T. (1995). Environmental degradation at different stages of economic development. Beyond Rio: The environmental crisis and sustainable livelihoods in the third world: 13-36.             
Partha, D. (2001). Human Well-Being and the Natural Environment, Oxford University Press.          
Rock, M. T. (1998). Freshwater use, freshwater scarcity, and socioeconomic development. The Journal of Environment & Development 7(3): 278-301.            
Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. F. Lambin, T. M. Lenton, M. Scheffer, C. Folke and H. J. Schellnhuber (2009). A safe operating space for humanity. nature 461(7263): 472-475.           
Sachs, J., J. W. McArthur, G. Schmidt-Traub, M. Kruk, C. Bahadur, M. Faye and G. McCord (2004). Ending Africa's poverty trap. Brookings Papers on Economic Activity 2004(1): 117-240.            
San Cristóbal, J. R. (2010). An environmental/input–output linear programming model to reach the targets for greenhouse gas emissions set by the kyoto protocol. Economic Systems Research 22(3): 223-236.          
Sarker, R., S. Gato-Trinidad and M. Imteaz (2013). Temperature and rainfall thresholds corresponding to water consumption in Greater Melbourne, Australia. 20th International Congress on Modelling and Simulation (MODSIM2013), Adelaide, Australia.           
Sarkodie, S. A. and V. Strezov (2019). A review on environmental Kuznets curve hypothesis using bibliometric and meta-analysis. Science of the Total Environment 649: 128-145.           
Selden, T. M. and D. Song (1994). Environmental quality and development: is there a Kuznets curve for air pollution emissions? Journal of Environmental Economics and Management 27(2): 147-162.            
Shang, Y., S. Lu, L. Shang, X. Li, Y. Wei, X. Lei, C. Wang and H. Wang (2016). Decomposition methods for analyzing changes of industrial water use. Journal of Hydrology 543: 808-817.           
Stern, D. I., M. S. Common and E. B. Barbier (1996). Economic growth and environmental degradation: the environmental Kuznets curve and sustainable development. World development 24(7): 1151-1160.           
Timothy, M., C. P. Khazamula, A. Francis, K. P. Tichaona, R. E. Nelson and M. Aluwani (2015). Comparative impact of public expenditure on agricultural growth: error correction model for South Africa and Zimbabwe. Journal of Human Ecology 50(3): 245-251.           
Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan and C. R. Liermann (2010). Global threats to human water security and river biodiversity. nature 467(7315): 555-561.            
Wang, Z., X. Deng, X. Li, Q. Zhou and H. Yan (2015). Impact analysis of government investment on water projects in the arid Gansu Province of China. Physics and Chemistry of the Earth, Parts A/B/C 79: 54-66.           
Xiao-jun, W., Z. Jian-yun, S. Shahid, A. ElMahdi, H. Rui-min, B. Zhen-xin and M. Ali (2012). Water resources management strategy for adaptation to droughts in China. Mitigation and adaptation strategies for global change 17(8): 923-937.         
Zhang, G. (1999). China’s water supply and demand in the 21st Century. Water and Hydropower, Beijing.            
Zhang, Z., X. Zhang and M. Shi (2018). Urban transformation optimization model: How to evaluate industrial structure under water resource constraints? Journal of cleaner production 195: 1497-1504.   
Zhao, X., X. Fan and J. Liang (2017). Kuznets type relationship between water use and economic growth in China. Journal of cleaner production 168: 1091-1100.    
Zhou, M., Q. Chen and Y. Cai (2013). Optimizing the industrial structure of a watershed in association with economic–environmental consideration: an inexact fuzzy multi-objective programming model. Journal of cleaner production 42: 116-131.          
Zimmer, D. and D. Renault (2003). Virtual water in food production and global trade: review of methodological issues and preliminary results. Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade. Value of Water Research Report Series.