ندا بیات (1397). پیش بینی نرخ ارز با استفاده از نقشههای خود سازمان ده بازگشتی. فصلنامه علمی پژوهشی اقتصاد و تجارت نوین، شماره 4،55-84.
مهرگان، نادر ، قربانی ، وحید(1388)،"تقاضای کوتاه مدت و بلند مدت بنزین در بخش حمل و نقل"پژوهشنامه حمل ونقل ، سال ششم، شماره 4 ، صص379-367.
موسوی جهرمی، یگانه و غلامی الهام (1395)،"مدل ترکیبی سبکه عصبی با الگوی ARIMA جهت پیش بینی مالیات بر ارزش افزوده بر مصرف بنزین در ایران"فصلنامه پژوهشهای اقتصادی (رشد و توسعه پایدار)، شماره دوم، صص 99-116.
معاونت امور برق و انرژی، دفتر برنامهریزی و اقتصاد کلان برق و انرژی، ترازنامه انرژی ایران سالهای 1381- 1396.
Abrishami, H., Mehrara, M., Ahrari, M., & Varahrami, V. (2010). A Hybrid Intelligent System for Forecasting Gasoline Price. Iranian Economic Review, 15(27), 13-31.
Aklilu, A. Z. (2020). Gasoline and diesel demand in the EU: Implications for the 2030 emission goal. Renewable and Sustainable Energy Reviews, 118, 109530
Assari, M. R., Ghanbarzadeh, A., Behrang, M. A., & Assareh, E. (2009, June). Estimating gasoline demand in Iran using different soft computing techniques. In 2009 7th IEEE International Conference on Industrial Informatics (pp. 106-112). IEEE.
Barreto, G. A. (2007). Time series prediction with the self-organizing map: A review. In Perspectives of neural-symbolic integration (pp. 135-158). Springer, Berlin, Heidelberg.
Box, G.E.P.; Jenkins, G.M. (1970). Time series analysis: forecasting and control, Holden-Day, San Francisco.
Box, G. E., & Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American statistical Association, 65(332), 1509-1526.
Bayat, N., & Salem, A. A. (2018). Modeling Electricity Expenditures using BSOM based on Techno-Socio Economic: A Case Study of Urban Households of Iran’s Provinces. Iranian Economic Review.
Boné, R., & Crucianu, M. (2002). Multi-step-ahead prediction with neural networks: a review. 9emes rencontres internationales: Approches Connexionnistes en Sciences, 2, 97-106.
Broadhead, J., & Killmann, W. (2008). Forests and Energy: Key Issues (No. 154). Food & Agriculture Org.
Dahl, C. A. (2012). Measuring global gasoline and diesel price and income elasticities. Energy Policy, 41, 2-13.
Fani, M., & Norouzib, N. (2019). Using Social and Economic Indicators for Modeling, Sensitivity Analysis and Forecasting the Gasoline Demand in the Transportation Sector. Iranian Journal of Energy-A, 4.
Fu, R., Zhang, Z., & Li, L. (2016, November). Using LSTM and GRU neural network methods for traffic flow prediction. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 324-328). IEEE.
Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
Kazemi, A., Ganjavi, H. S., Menhaj, M., Mehregan, M., Taghizadeh, M., & Asl, A. F. (2009, December). A multi-level artificial neural network for gasoline demand forecasting of Iran. In 2009 Second International Conference on Computer and Electrical Engineering (Vol. 1, pp. 61-64). IEEE.
Kazemi, A., Shakouri, H. G., Menhaj, M. B., Mehregan, M. R., & Neshat, N. (2010). A hierarchical artificial neural network for transport energy demand forecast: Iran case study. Neural Network World, 20(6), 761.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241-265.
Kim, T. Y., & Cho, S. B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72-81.
Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2017). Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart Grid, 10(1), 841-851.
Lin, C. Y. C., & Prince, L. (2013). Gasoline price volatility and the elasticity of demand for gasoline. Energy Economics, 38, 111-117.
Mohammadi, K., Shamshirband, S., Petković, D., & Khorasanizadeh, H. (2016). Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renewable and Sustainable Energy Reviews, 53, 1570-1579.
Sapnken, E. F. (2018). Modeling and forecasting gasoline consumption in Cameroon using linear regression models.
Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine, 4(2), 24-38.
Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and sustainable energy reviews, 16(2), 1223-1240.
Tamba, J. G., Nsouandélé, J. L., & Lélé, A. F. (2017). Gasoline consumption and economic growth: Evidence from Cameroon. Energy Sources, Part B: Economics, Planning, and Policy, 12(8), 685-691.
Xu, F., Sepehri, M., Hua, J., Ivanov, S., & Anyu, J. N. (2018). Time-Series Forecasting Models for Gasoline Prices in China. International Journal of Economics and Finance, 10(12), 1-43.