پیش بینی مصرف بنزین درایران با استفاده از رهیافت های یادگیری عمیق و سری های زمانی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار گروه اقتصاد، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی قزوین

2 کارشناس ارشد آمار، دانشگاه علامه طباطبایی

چکیده

کمبود انرژی امروزه به عنوان مانعی جدی در دستیابی به توسعه اقتصادی مطرح است، به همین دلیل مدیریت تقاضای آن مورد توجه کشورها است. در ایران بخش حمل و نقل سهم عمده­ای از مصرف انرژی دارد که 7/99 درصد از آن متعلق به بنزین است. با توجه به روند افزایشی مصرف بنزین در ایران، کافی نبودن تولید داخل کشور، رشد قابل توجه واردات بنزین در سال­های اخیر اهمیت مدیریت مصرف بنزین افزایش یافته است که پیش­بینی هر چه دقیق­تر روند مصرف آن می­تواند در تحقق این امر بسیار مفید باشد. این مطالعه به پیش­بینی مصرف بنزین با استفاده از داده­های ماهانه با مقایسه عملکرد سه روش شبکه­های با حافظه طولانی کوتاه­مدت، نقشه­های خودسازمانده بازگشتی و روش سنتی میانگین متحرک جمع‎بسته خود رگرسیون فصلی پرداخته است. نتایج حاکی از این است که روش یادگیری عمیق شبکه­های با حافظه طولانی کوتاه­مدت و تواتر12 ماهه برای آموزش داده­ها  کاراتر از دو روش دیگر است.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting gasoline consumption in Iran using deep learning and time series approaches

نویسندگان [English]

  • n b 1
  • ali rezaei 2
1 Assistant professor of Economics, Department of Qazvin Branch, Islamic Azad University
2 Master of Mathematical Statistics, University of Allameh Tabataba’i
چکیده [English]

Today, energy shortages are a serious issue to achieve economic development, which is why demand management is an attractive concern for countries. In Iran, the transportation sector has a major share of energy consumption, 99.7% of which belongs to gasoline. The increasing trend of gasoline consumption in Iran, insufficient domestic production, significant growth of gasoline imports in recent years show the incremental importance of managing gasoline consumption in Iran, so, predicting the consumption process as accurately as possible can be very useful in achieving this. This study predicts gasoline consumption using monthly data by comparing the efficiency of three methods, networks with long-term and short-term memory, recursive self-organizing maps, and the traditional method of moving the average seasonal auto-regression. The results indicate that the use of 12-month time-frequency for data training had more accurate results compared to other data frequencies, and the deep learning method of networks with long-term short-term memory was more efficient than the other two methods.

کلیدواژه‌ها [English]

  • Gasoline Consumption Predicting
  • Deep Learning
  • Long Short-Term memory
  • Recurrent Self-Organizing Map JEL Classification: Q41
  • E17
  • Q47
ندا بیات (1397). پیش بینی نرخ ارز با استفاده از نقشه­های خود سازمان ده بازگشتی. فصلنامه علمی پژوهشی  اقتصاد و تجارت نوین، شماره 4،55-84.
     مهرگان، نادر ، قربانی ، وحید(1388)،"تقاضای کوتاه مدت و بلند مدت بنزین در بخش حمل و نقل"پژوهشنامه حمل ونقل ، سال ششم، شماره 4 ، صص379-367.
     موسوی جهرمی، یگانه و غلامی الهام (1395)،"مدل ترکیبی سبکه عصبی با الگوی ARIMA جهت پیش بینی مالیات بر ارزش افزوده بر مصرف بنزین در ایران"فصلنامه پژوهش­های اقتصادی (رشد و توسعه پایدار)، شماره دوم، صص 99-116.
     معاونت امور برق و انرژی، دفتر برنامه­ریزی و اقتصاد کلان برق و انرژی، ترازنامه انرژی ایران سال­های 1381- 1396.
     Abrishami, H., Mehrara, M., Ahrari, M., & Varahrami, V. (2010). A Hybrid Intelligent System for Forecasting Gasoline Price. Iranian Economic Review, 15(27), 13-31.
     Aklilu, A. Z. (2020). Gasoline and diesel demand in the EU: Implications for the 2030 emission goal. Renewable and Sustainable Energy Reviews, 118, 109530
     Assari, M. R., Ghanbarzadeh, A., Behrang, M. A., & Assareh, E. (2009, June). Estimating gasoline demand in Iran using different soft computing techniques. In 2009 7th IEEE International Conference on Industrial Informatics (pp. 106-112). IEEE.
     Barreto, G. A. (2007). Time series prediction with the self-organizing map: A review. In Perspectives of neural-symbolic integration (pp. 135-158). Springer, Berlin, Heidelberg.
     Box, G.E.P.; Jenkins, G.M. (1970). Time series analysis: forecasting and control, Holden-Day, San Francisco.
     Box, G. E., & Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American statistical Association, 65(332), 1509-1526.
     Bayat, N., & Salem, A. A. (2018). Modeling Electricity Expenditures using BSOM based on Techno-Socio Economic: A Case Study of Urban Households of Iran’s Provinces. Iranian Economic Review.
     Boné, R., & Crucianu, M. (2002). Multi-step-ahead prediction with neural networks: a review. 9emes rencontres internationales: Approches Connexionnistes en Sciences, 2, 97-106.
     Broadhead, J., & Killmann, W. (2008). Forests and Energy: Key Issues (No. 154). Food & Agriculture Org.
     Dahl, C. A. (2012). Measuring global gasoline and diesel price and income elasticities. Energy Policy, 41, 2-13.
     Fani, M., & Norouzib, N. (2019). Using Social and Economic Indicators for Modeling, Sensitivity Analysis and Forecasting the Gasoline Demand in the Transportation Sector. Iranian Journal of Energy-A, 4.
     Fu, R., Zhang, Z., & Li, L. (2016, November). Using LSTM and GRU neural network methods for traffic flow prediction. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 324-328). IEEE.
     Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
     Kazemi, A., Ganjavi, H. S., Menhaj, M., Mehregan, M., Taghizadeh, M., & Asl, A. F. (2009, December). A multi-level artificial neural network for gasoline demand forecasting of Iran. In 2009 Second International Conference on Computer and Electrical Engineering (Vol. 1, pp. 61-64). IEEE.
     Kazemi, A., Shakouri, H. G., Menhaj, M. B., Mehregan, M. R., & Neshat, N. (2010). A hierarchical artificial neural network for transport energy demand forecast: Iran case study. Neural Network World, 20(6), 761.
     Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
     Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241-265.
     Kim, T. Y., & Cho, S. B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72-81.
     Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2017). Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart Grid, 10(1), 841-851.
     Lin, C. Y. C., & Prince, L. (2013). Gasoline price volatility and the elasticity of demand for gasoline. Energy Economics, 38, 111-117.
     Mohammadi, K., Shamshirband, S., Petković, D., & Khorasanizadeh, H. (2016). Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renewable and Sustainable Energy Reviews, 53, 1570-1579.
     Sapnken, E. F. (2018). Modeling and forecasting gasoline consumption in Cameroon using linear regression models.
     Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine, 4(2), 24-38.
     Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and sustainable energy reviews, 16(2), 1223-1240.
     Tamba, J. G., Nsouandélé, J. L., & Lélé, A. F. (2017). Gasoline consumption and economic growth: Evidence from Cameroon. Energy Sources, Part B: Economics, Planning, and Policy, 12(8), 685-691.
     Xu, F., Sepehri, M., Hua, J., Ivanov, S., & Anyu, J. N. (2018). Time-Series Forecasting Models for Gasoline Prices in China. International Journal of Economics and Finance, 10(12), 1-43.