بررسی مسائل اقتصاد ایران

بررسی مسائل اقتصاد ایران

سرایت بحران مالی به بازار سهام ایران: رویکرد شبکه

نوع مقاله : علمی-پژوهشی

نویسندگان
1 دانشجوی دکترای اقتصاد، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد
2 دانشیار اقتصاد، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد
چکیده
بازارهای سهام از مهم‌ترین بازارهای مالی کشورها هستند و اثری که بحران‌های مالی بر این بازارها دارد برای سرمایه-گذاران بسیار مهم است. هدف از این پژوهش، بررسی سرایت بحران مالی بر بازار سهام ایران است. برای بررسی سرریز تلاطم از شاخص سرریز دیبلدییلماز بهره گرفته شد. از تئوری شبکه پیچیده برای بررسی سرریز تلاطم در بازارهای سهام برای دوره زمانی 10-8-2007 تا 13-10-2019 استفاده شد. بازارهای سهام، شامل بازار سهام نزدک، شنرن، نیویورک، ایران، اروپا و توکیو است. دوره زمانی پژوهش، شامل سه دوره زمانی، بحران مالی آمریکا، بحران بدهی اروپا و بعد از بحران مالی است. در زمان بحران مالی آمریکا و بحران بدهی اروپا، بازار بورس ایران کم‌ترین تأثیرپذیری در شبکه داشته است. طول مسیر میانگین، در زمان بحران های مالی در حداقل قرار دارد. چگالی شبکه و وزن شبکه در زمان بحران‌های مالی افزایش یافته است و بعد از بحران‌های مالی در حداقل قرار گرفته است، که نشان دهنده افزایش ارتباط بازارهای مالی و شبکه سرریز تلاطم در زمان بحران‌های مالی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Contagion of the financial crisis to the Iranian stock market: network approach

نویسندگان English

samaneh bagheri 1
Habib Ansari Samani 2
1 Ph.D.Student in Economics, Faculty of Economics, Management and Accounting, Yazd University
2 Associate professor of Economics, Faculty of Economics, management and accounting, Yazd University
چکیده English

Stock markets are one of the most important financial markets of countries, and the effect of financial crises on these markets is very important for investors. The purpose of this research is to investigate the contagion of the financial crisis on the Iranian stock market. Diebold and Yilmaz spillover index was used to check the volatility spillover. The complex network theory was used to investigate the volatility spillover in the stock markets for the period of 8-10-2007 to 10-13-2019. Stock markets include Nazdaq, Shenzhen, NewYork, Iran, Europe and Tokyo stock markets. The time period of the research includes three time periods, the American financial crisis, the European debt crisis and after the financial crisis. During the American financial crisis and the European debt crisis, the Iranian stock market had the least influence in the network. Average path length is at a minimum during financial crises. The density of the network and the weight of the network increased during the financial crisis and it was minimized after the financial crisis, which indicates the increase in the connection between the financial markets and the spillover network during the financial crisis.

کلیدواژه‌ها English

Stock Market
Complex Network
Dibold &‌‌ Yilmaz Overflow Index
US Financial Crisis
European Financial Crisis
ابونوری، اسمعیل؛ عبداللهی، محمد.(1390). ارتباط بازارهای سهام ایران، امریکا، ترکیه و مالزی در یک مدل گارچ چند متغیره، بورس اوراق بهادار . 70-61 :(4)14.

باقری، سمانه و انصاری سامانی، حبیب. (1400). بررسی اثر بحران مالی بر شبکه بازارهای نفت. بررسی مسائل اقنصاد ایران.

طالب پور عباس آباد، اکبر و ستاری، علی. (1393). تبیین مکانیسم سرایت تلاطمات بین بازارهای بورس. پژوهش­های اقتصاد توسعه و برنامه­ریزی.93-73. 3:1.
یزدان پرست، عبدالرحیم و احدی سرکانی،  سید یوسف (1391). بررسی ارتباط بحران مالی در بازارهای سرمایه عمده جهان با شاخص های سهام بورس اوراق بهادار تهران، قبل، طی و پس از بحران. دانش مالی تحلیل اوراق بهادار. 12-1: (19)6.
Ansari Samani, H., & Bagheri, S. (2022). The impact of Iranian oil sanctions on the oil Market volatility spillover network. Petroleum Business Review.
Bagheri, S., & Ansari Samani, H. (2022). effect of financial crisis on oil market network. Journal of Iranian Economic Issues.
Rjoub. S., Azzam .H. (2012). Financial crises, stock returns and volatility in an emerging stock market: the case of Jordan .Journal of Economic Studies, 39(2): 178-211.
Diebold, F.X., Yilmaz, K., (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J. 119, 158–171.
Diebold, F. X., & Yilmaz, K. (2014). On the network topology of variance decompositions:
Measuring the connectedness of financial firms. Journal of Econometrics, 182, 119–134.
Diebold, F. X., & Yilmaz, K. (2015). Trans-Atlantic equity volatility connectedness: US and
European Financial Institutions, 2004–2014. Journal of Financial Econometrics, 14, 81–127.
Zhang, W, Zhuang, X and Lu,Y. (2018) .Spatial spillover effects and risk contagion around G20 stock markets based on volatility network. North American Journal of Economics and Finance.
Zhang, D. (2017). Oil shocks and stock markets revisited: Measuring connectedness from a global perspective. Energy Economics.62: 323-333.
Chowdhury, B, Dungy, M, Kangogo, M, Abu Sayeed, M, Volkov, V, (2019). The Changing Network of  Market Linlage: The Asian Experience, International Review of Financial Analysis, 64,71-92.
Zhang, D., and Broadstock, D. C. (2018). Global financial crisis and rising connectedness in the international commodity markets. International Review of Financial Analysis.
Mensi, W., Boubaker,F. Z., Al-Yahyaee, K. H., and Kang, S. H. (2018). Dynamic volatility spillovers and connectedness between global, regional, and GIPSI stock markets. Finance Research Letters, 25, 230–238.
Luo, J., and Ji, Q. (2018). High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets. Energy Economics, 76, 424–438.
Ji, Q., Bouri, E., and Roubaud, D. (2018). Dynamic network of implied volatility transmission among US equities, strategic commodities, and BRICS equities. International Review of Financial Analysis, 57, 1–12.
Ji, Q., Geng, J. B. and Tiwari, A. K. (2018). Information spillovers and connectedness networks in the oil and gas markets. Energy Economics, 75, 71–84.
Billio, M., Getmansky, M., Lo, A. W., Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104, 535–559.
Minoiu, C.,  and Reyes, J. A. (2013). A network analysis of global banking: 1978–2010. Journal of Financial Stability, 9, 168–184.
Minoiu, C., and Reyes, J. A. (2013). A network analysis of global banking: 1978–2010. Journal of Financial Stability, 9, 168–184.
Wang, G. J., Xie, C., and Stanley, H. E. (2018). Correlation structure and evolution of world stock markets: Evidence from Pearson and partial correlation-based networks. Computational Economics, 51, 607–635.
Kim, S.W. and J.H. Roges. (1995), International Stock Price Spillovers and Market Liberalization: Evidence from Korea, Japan, and the united states, Journal of Empirical finance,9: 996-933.
Salman, N and Abbas, M.(2012). Impact Of Financial Crisis On Asian Stock Market, Interdisciplinary Journal Of Contemporary Research Business.3 (99): 72-90.
Herring.J.,Wachter.S.(1999).Real estate booms and banking busts, an international comparison.Working Paper .99-27.
Mishkin, F.S. (1991). Asymmetric information and financial crises: a historical perspective, ournal of National Bureau of Economic Research, 8(1): 69-108.
Minsky.H. (1977). A theory of systemic fragility, in Altman, E.I. and Sametz, A.W. (eds), Financial.
Zouhair, M, Lanouar, C , Ajm, A,N. (2014). Contagion versus Interdependence: The Case of the BRIC Countries During the Subprime Crises. Emerging Markets and the Global Economy, 555-582.
Lim, L.K., )2009(. Convergence and interdependence between ASEAN-5 stock markets. Mathematics and Computers in Simulation 79, 2957–2966.

Siebenbrunner, C and Sigmund, M.(2019). Quantile Panel Estimation of Financial Contagion Effects. Panel Data Econometrics. 639-664.

Grilli, R, Iori, G, Stamboglis, N, Tedeschi, T.(2017). A Networked Economy: A Survey on the Effect of Interaction in Credit Markets. Introduction to Agent-Based Economics. 229-252.

Huang, W., Zheng, H., & Chia, W.-M. (2010). Financial crises and interacting heterogeneous agents. Journal of Economic Dynamics and Control, 34 (6), 1105–1122.       
Huang, w and Chen,Z..(2018). Modelling contagion of financial crises. North American Journal of Economics and Finance.
Mendoza  E, and Quadrini, V.(2010). Financial globalization, financial crises and contagion. Journal of Monetary Economics 57 : 24–39.
Kole, E., 2006. On crises, crashes and comovements. ERIM Ph.D. Series Research in Management.83.

Zhang, W,. Zhuang, X, Lu, Y. (2020). Spatial Spillover Effect and Risk Contagion Around G20 Stock  Market Based on Volatility Network. North Amerian Journal of Economics and Finanace. 

Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3): 403-412.
Lu, L. and Zhang, M. (2019). Edge Betweenness Centrality. In Evcyclopedia of systems Biology . Springe, NewYork, 147 – 143.
 Ruhnau, B.(2000). Eigenvector-centrality—a node-centrality?. Social Networks 22 :357–365.
Sheng, J. Dai, B. Wang et al., (2019). Identifying influential nodes in complex networks based on global and local structure, Physica A. 123262,
Schuenemann, J.H, Ribberink, N,  Katenka, N. (2020). Japanese and Chinese Stock Market Behaviour in Comparison – an analysis of dynamic networks. Asia Pacific Management Review. 25(2): 99-110.
Moghadam, H,E. Mohammadi,T,. Kashani,M,F.Shakeri, A.(2019). Complex networks analysis in Iran stock market: The application of centrality. Physica A. 
Majapa, M, and Gossel, S,J. (2016). Topology of the South African stock market network across the 2008 financial crisis. Physica A. 445 : 35–47.

Romance, M. (2011). Local estimates for eigenvector-like centralities of complex networks. Journal of Computational and Applied Mathematics. 7(235): 1868-1874.

Kito, T. and Ueda, K., (2014). The implications of automobile parts supply network structures: A complex network approach. CIRP Annals-Manufacturing Technology, 63(1): 393-396.

  • تاریخ دریافت 29 شهریور 1400
  • تاریخ بازنگری 23 دی 1400
  • تاریخ پذیرش 15 بهمن 1400