پیش‌بینی قیمت روغن خوراکی: مطالعه موردی روغن آفتابگردان

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار اقتصاد موسسه مطالعات و پژوهش های بازرگانی،تهران، ایران

2 دانشیار اقتصاد موسسه مطالعات و پژوهش‌های بازرگانی ،تهران، ایران.

10.30465/ce.2024.48871.1968

چکیده

هدف مطالعه حاضر، ضمن شناسایی متغیرهای اثرگذار و بررسی اثر آن‌ها بر قیمت روغن آفتابگردان در ایران، ارائه پیش‌بینی­های برون­­نمونه­ای (1402:07-1403:06) با استفاده از روش خودرگرسیون برداری (VAR) است. در ابتدا، با توجه به هم‌انباشته بودن متغیرهای تحقیق، از آزمون هم‌انباشتگی یوهانسون- جوسیلیوس استفاده شد که وجود رابطه بلندمدت بین متغیرها تایید گردید. سپس روابط بلندمدت و کوتاه­مدت (VECM) برآورد و ضریب جمله تصحیح خطا برابر 3147/0- تخمین زده شد. در ادامه، توابع واکنش آنی مورد بررسی قرار گرفت و مطابق نتایج آن، شوک ایجاد شده در قیمت کالای جانشین، نرخ ارز ترجیحی و شاخص قیمت جهانی روغن به ترتیب با 16، 10 و 6/9 درصد به شکل استاندارد، بیش از سایر متغیرهای الگو بر نوسانات قیمت روغن آفتابگردان مؤثر بوده­اند. بر اساس نتایج تجزیه واریانس نیز متغیر شاخص قیمت جهانی روغن، بیشتر از سایر متغیرها، تغییرات متغیر وابسته را توضیح می­دهد. در نهایت، پیش­بینی برون نمونه­ای انجام شد که مطابق نتایج معیارهای ارزیابی پیش­بینی، مدل تحقیق توانسته پیش­بینی‌های خوبی را از روند قیمتی روغن آفتابگردان ارائه دهد. بر اساس نتایج بدست آمده رفع موانع تولید، تدوین و اجرای بسته­های تشویقی برای تولیدکنندگان، بازنگری در مقررات واردات کالا به کشور، برای کنترل قیمت روغن آفتابگردان قابل توصیه است.
طبقه ­بندی JEL:
C32, D12, E37 .

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Price Forecasting Edible Oil: Case Study Sunflower Oil

نویسندگان [English]

  • Seyed Saleh Akbar Mousavi 1
  • Mansour Asgari 2
  • Tayyebeh Rahnemoon Piruj 1
1 Assistant Professor of Economics , Institute for Trade Studies and Research, Tehran, Iran
2 Associate Professor of Economics , Institute for Trade Studies and Research, Tehran, Iran.
چکیده [English]

The present study aims to identify the influencing variables and investigate their effect on the price of sunflower oil in Iran and out-of-sample forecast (2023:10-2024:09) using the vector autoregression method. First, due to the cointegration of the research variables, we used the Johansen-Juselius cointegration test to confirm the long-term relationship between the variables. Then, the long-term and short-term models were estimated, and the error correction coefficient was obtained at -0.3147. Next, we investigated impulse response functions. According to the results of impulse response functions, shocks in the price of the substitute product, the government exchange rate, and the global oil price index (with 16, 10, and 9.6 percent in standard form, respectively) have been more effective than other variables on the fluctuations of the sunflower oil price. Also, the variance decomposition showed the global oil price index variable explains the changes in the dependent variable more than other variables. Finally, we estimated out-of-sample forecasts. Based on the forecast evaluation criteria, the model can accurately forecast the price trend of sunflower oil. Also, according to our findings recommended removing obstacles to production, formulating and implementing incentive packages for producers, and reviewing the regulations for importing goods into the country to control the price of sunflower oil.
 JEL Classification: E37, D12, C32.
 

کلیدواژه‌ها [English]

  • Price Forecasting
  • Sunflower Oil
  • VAR Model
انجمن صنفی صنایع روغن نباتی ایران (1402). سری زمانی ماهانه تولید و واردات انواع روغن. تهران.
باغستانی، علی­اکبر؛ یزدانی، سعید؛ و احمدیان، مجید (1394). کاربرد رهیافت شبکه عصبی در پیش­بینی قیمت کنجاله سویا در بورس کالای ایران. فصلنامه اقتصاد مالی و توسعه، (33)9: 1-13.
بانک مرکزی جمهوری اسلامی ایران (1402)، اداره بررسی­ها و سیاست­های اقتصادی، بانک اطلاعات سری‌های زمانی اقتصادی، سری­زمانی نرخ ارز بازار غیررسمی، تهران.
حقیقت، جعفر؛ اکبرموسوی، سید صالح (1395). اقتصادسنجی کاربردی همراه با نرم­افزارهای JMulTi و EViews 9. انتشارات نورعلم، تهران.
سازمان حمایت مصرف­کنندگان و تولیدکنندگان (1402). سری زمانی قیمت­های ماهانه انواع روغن، وزارت صنعت، معدن و تجارت (صمت). تهران.
عباسی، صدیقه؛ محمدی، حمید؛ و دینی، علی (1388). پیش­بینی قیمت دانه­های روغنی در ایران (مطالعه موردی ذرت و سویا). فصلنامه پژوهش­ها و سیاست­های اقتصادی، (49)17: 53-41.
عبدی، حسن (1390). بررسی اثر سرمایه­گذاری­های زیربنایی دولتی بر رشد اقتصادی در ایران. پایان­نامه کارشناسی ارشد، دانشگاه تبریز، تبریز.
قادرزاده، حامد؛ گنجی، سوسن؛ و احمدزاده، خالد (1398). تعیین الگوی مناسب پیش­بینی قیمت محصولات زراعی (مطالعه موردی: گندم، سیب­زمینی و یونجه). فصلنامه تحقیقات اقتصاد کشاورزی، (3)11: 40-23.
مرکز آمار ایران (1400). هزینه و درآمد خانوارها، تهران.
مرکز آمار ایران (1402). شاخص قیمت مصرف­کننده- مهر1402. تهران.
موسسه مطالعات و پژوهش­های بازرگانی (1402). مقررات صادرات و واردات 1402. چاپ دوم، انتشارات چاپ و نشر بازرگانی، تهران.
میرزائی، عباس؛ ضیاآبادی، مریم؛ زارع مهرجردی، محمدرضا؛ و محمودی، سجاد (1392). مقایسه روش­های سنتی و الگوی ژنتیکی در پیش­بینی نوسان­های قیمت محصولات گزینش­شده کشاورزی. فصلنامه اقتصاد کشاورزی، (2)7: 18-1.
نصابیان، شهریار؛ قشقایی، شهاب‌الدین (1396). پیش‌بینی قیمت جهانی گندم و صرفه‌جویی ارزی در ایران. فصلنامه اقتصاد مالی، (41)11: 241-225.
Ab Rahman, N. M. N. (2013). “The Empirical Analysis on Prices of The Malaysian Crude Palm Oil Futures Market”. International Review of Management and Business Research, 2(2): 401.
Ali, Z., Aslam, M., & Rasool, S. (2013). “Factors Affecting Consumption of Edible Oil in Pakistan”. IOSR Journal of Business and Management, 15(1): 87-92.
BT Zainal, B. (2013). “A Study on the Factors Affecting Crude Palm Oil (CPO) Price in Malaysia”. Available at SSRN 2279006.
Codex Alimentarius, Food and Agriculture Organization of the United Nations, Standard for Named Vegetable Oils, CXS 210-1999, Available: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf, (Accessed, March 2023).
Favre, R., & Myint, K. (2009). “An analysis of the Myanmar Edible Oil Crops Sub-sector. Rural Infrastructure and Agro-Industries Division”, Food and Agriculture Organization of the United Nations.
Food and Agriculture Organization of the United Nations. (2008). “Determinants of Current Food Price Hikes and Their Implications in the Northern States of Sudan”, A National Consultancy Report Submitted to SIFSIA-N/FAO.
Food and Agriculture Organization of the United Nations. (2021). “Oilseeds, Oils & Meals monthly price and policy update”, Available: https://www.fao.org/3/cb4717en/cb4717en.pdf, (Accessed, March 2023).
Food and Agriculture Organization of the United Nations. (2023). “FAO price indices for oilseeds, vegetable oils and oilmeals”, Available: https://www.fao.org/markets-and-trade/commodities/oilcrops/fao-price-indices-for-oilseeds-vegetable-oils-and-oilmeals/en/, (Accessed, March 2023).
Huh, H. S., & Park, C. Y. (2013). “Examining the Determinants of Food Prices in Developing Asia”. Asian Development Bank Economics Working Paper Series, (370).
Kanchymalay, K., Salim, N., Sukprasert, A., Krishnan, R., & Hashim, U. R. A. (2017). “Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques”. In IOP Conference Series: Materials Science and Engineering, 226(1): 012117.
Pesaran, M. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics letters, 58(1), 17-29.
Putra, H. A., Seftarita, C., & Suriani, S. (2021). “Determinants of Price Fluctuation for Cooking Oil Commodity in Aceh Province, Indonesia”. International Journal of Business, Economics, and Social Development, 2(3): 113-118.
Satari Yuzbashkandi, S., Khalilian, S., & Mortazavi, S. A. (2017). “Edible Oil Market Liberalization in Iran: Producer and Consumer Welfare Effects”. European Online Journal of Natural and Social Sciences, 6(4): 621-636.
Shiferaw, Y. A. (2023). “An analysis of East African Tea Crop Prices Using the MCMC Approach to Estimate Volatility and Forecast the In-sample Value-at-risk”. Scientific African, 19: e01442.
Sundoro, H. S., & Putlia, G. (2021). “The Cooking Palm Oil Price Determinants After Palm Oil-free labeling”. Journal Ekonomi dan Bisnis, 24(1): 83-98.
Topcu, Y., Turhan, B., & Uzundumlu, A. (2010). “Analysis of Factors Affecting Turkish Sunflower Oil Consumer Behavior: The Case of Erzurum Province”. Italian Journal of Food Science, 22(2).
Wang, J., Wang, Z., Li, X., & Zhou, H. (2022). “Artificial Bee Colony-based Combination Approach to Forecasting Agricultural Commodity Prices”. International Journal of Forecasting, 38(1): 21-34.
Xu, X., & Zhang, Y. (2021). “Corn Cash Price Forecasting with Neural Networks”. Computers and Electronics in Agriculture, 184: 106-120.
Xu, X., & Zhang, Y. (2022). “Soybean and Soybean Oil Price Forecasting through the Nonlinear Autoregressive Neural Network (NARNN) and NARNN with Exogenous Inputs (NARNN–x)”. Intelligent Systems with Applications, 13: 200061.